Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.939
Filter
1.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38579352

ABSTRACT

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Subject(s)
Antiviral Agents , Isoflavones , Millettia , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Millettia/chemistry , Molecular Structure , Humans , Rotenone/pharmacology , Rotenone/chemistry , Rotenone/analogs & derivatives , Plant Leaves/chemistry , Plant Roots/chemistry , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Viruses/drug effects
2.
Sci Rep ; 14(1): 8991, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637583

ABSTRACT

COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Peptidomimetics , Humans , SARS-CoV-2/metabolism , Peptidomimetics/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Amino Acids , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
Microb Cell Fact ; 23(1): 117, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644470

ABSTRACT

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.


Subject(s)
Antiviral Agents , Cyanobacteria , Polysaccharides, Bacterial , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Cyanobacteria/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/biosynthesis , Animals , Humans , Spectroscopy, Fourier Transform Infrared , Chlorocebus aethiops
4.
Sci Rep ; 14(1): 9262, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649402

ABSTRACT

Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis B virus , Molecular Docking Simulation , Neural Networks, Computer , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Hepatitis B virus/drug effects , Hepacivirus/drug effects , Humans , Drug Design , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Hepatitis B/virology , Hepatitis B/drug therapy , Ligands , Molecular Dynamics Simulation , Hepatitis C/drug therapy , Hepatitis C/virology
5.
J Nat Prod ; 87(4): 1059-1066, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38561238

ABSTRACT

Seven new sugar alcohol-conjugated acyclic sesquiterpenes, acremosides A-G (1-7), were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. The structures were determined by comprehensive analyses of 1D and 2D NMR spectroscopic data. The relative configurations were established by J-based configuration analysis and acetonide derivatization. The absolute configurations were elucidated by the Mosher ester method and ECD calculations. The structures of acremosides E-G (5-7) featured the linear sesquiterpene skeleton with a tetrahydrofuran moiety attached to a sugar alcohol. Acremosides A (1) and C-E (3-5) showed significant inhibitory activities against hepatitis C virus (EC50 values of 4.8-8.8 µM) with no cytotoxicity (CC50 of >200 µM).


Subject(s)
Acremonium , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Animals , Molecular Structure , Acremonium/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Porifera/chemistry , Hepacivirus/drug effects , Humans , Pseudomonas aeruginosa/drug effects
6.
J Med Chem ; 67(8): 6495-6507, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38608245

ABSTRACT

We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Proteolysis , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Proteolysis/drug effects , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , HEK293 Cells , Drug Discovery , COVID-19 Drug Treatment , A549 Cells
7.
PLoS One ; 19(4): e0298201, 2024.
Article in English | MEDLINE | ID: mdl-38626042

ABSTRACT

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Subject(s)
Alkaloids , COVID-19 , Humans , SARS-CoV-2/metabolism , Quercetin/pharmacology , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
8.
J Med Chem ; 67(8): 6519-6536, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592023

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Thiophenes , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Virus Replication/drug effects , Humans , SARS-CoV-2/drug effects , Animals , Drug Discovery , Mice , Crystallography, X-Ray , COVID-19 Drug Treatment , Structure-Activity Relationship , Murine hepatitis virus/drug effects
9.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557068

ABSTRACT

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Subject(s)
Alkaloids , Quinolizidines , Sophora , Tobacco Mosaic Virus , Antifungal Agents , Sophora/chemistry , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Seeds/chemistry
10.
PLoS One ; 19(4): e0301086, 2024.
Article in English | MEDLINE | ID: mdl-38662719

ABSTRACT

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Subject(s)
Antiviral Agents , Iridoids , Molecular Docking Simulation , Olea , Plant Extracts , Plant Leaves , Polyphenols , SARS-CoV-2 , Olea/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Computer Simulation , COVID-19 Drug Treatment , Luteolin/pharmacology , Luteolin/chemistry , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , Apigenin/pharmacology , Apigenin/chemistry
11.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38445884

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Subject(s)
COVID-19 , Viral Nonstructural Proteins , Humans , Viral Nonstructural Proteins/metabolism , Pandemics , Virus Replication , DNA Helicases/metabolism , Adenosine Triphosphatases , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cell Proliferation , RNA Helicases/metabolism , Cyclic AMP Response Element-Binding Protein/genetics
12.
Chem Biodivers ; 21(4): e202301786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466126

ABSTRACT

SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 µg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 µg/ml), and Arabincoside B (IC50=53.31 µg/ml).


Subject(s)
Apocynaceae , COVID-19 , Coronavirus 3C Proteases , Animals , Humans , SARS-CoV-2 , Molecular Docking Simulation , Apocynaceae/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Pregnanes/pharmacology , Pregnanes/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Dynamics Simulation
13.
Virology ; 594: 110042, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492519

ABSTRACT

High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.


Subject(s)
RNA Viruses , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Humans , Antiviral Agents/chemistry , Artificial Intelligence , RNA Viruses/genetics , Zika Virus/genetics , Zika Virus Infection/drug therapy
14.
Eur J Med Chem ; 269: 116305, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38518525

ABSTRACT

Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 µM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 µM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 µM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 µM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.


Subject(s)
Influenza A Virus, H5N1 Subtype , Neuraminidase , Oseltamivir/analogs & derivatives , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Oseltamivir/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Oxadiazoles/pharmacology , Drug Resistance, Viral
15.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38446062

ABSTRACT

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 , Pyrazoles , Quinolines , Humans , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , COVID-19 Drug Treatment , Antiviral Agents/chemistry
16.
J Chem Inf Model ; 64(6): 1984-1995, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38472094

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Small Molecule Libraries/pharmacology , Pharmacophore , Consensus , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
17.
Virus Res ; 344: 199359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521505

ABSTRACT

The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.


Subject(s)
African Swine Fever Virus , Antiviral Agents , DNA-Directed DNA Polymerase , African Swine Fever Virus/drug effects , African Swine Fever Virus/genetics , African Swine Fever Virus/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , African Swine Fever/virology , Swine , Drug Discovery , Virus Replication/drug effects , Drug Evaluation, Preclinical , Protein Binding , Molecular Docking Simulation , DNA, Viral/genetics , Pharmacophore
18.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38546211

ABSTRACT

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Subject(s)
Communicable Diseases , Dengue Virus , Dengue , Piperidines , Virus Diseases , Animals , Mice , Dengue Virus/physiology , Mice, Inbred ICR , Endopeptidases/pharmacology , Dengue/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Virus Diseases/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
19.
J Chem Inf Model ; 64(8): 3047-3058, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38520328

ABSTRACT

Covalent drugs exhibit advantages in that noncovalent drugs cannot match, and covalent docking is an important method for screening covalent lead compounds. However, it is difficult for covalent docking to screen covalent compounds on a large scale because covalent docking requires determination of the covalent reaction type of the compound. Here, we propose to use deep learning of a lateral interactions spiking neural network to construct a covalent lead compound screening model to quickly screen covalent lead compounds. We used the 3CL protease (3CL Pro) of SARS-CoV-2 as the screen target and constructed two classification models based on LISNN to predict the covalent binding and inhibitory activity of compounds. The two classification models were trained on the covalent complex data set targeting cysteine (Cys) and the compound inhibitory activity data set targeting 3CL Pro, respected, with good prediction accuracy (ACC > 0.9). We then screened the screening compound library with 6 covalent binding screening models and 12 inhibitory activity screening models. We tested the inhibitory activity of the 32 compounds, and the best compound inhibited SARS-CoV-2 3CL Pro with an IC50 value of 369.5 nM. Further assay implied that dithiothreitol can affect the inhibitory activity of the compound to 3CL Pro, indicating that the compound may covalently bind 3CL Pro. The selectivity test showed that the compound had good target selectivity to 3CL Pro over cathepsin L. These correlation assays can prove the rationality of the covalent lead compound screening model. Finally, covalent docking was performed to demonstrate the binding conformation of the compound with 3CL Pro. The source code can be obtained from the GitHub repository (https://github.com/guzh970630/Screen_Covalent_Compound_by_LISNN).


Subject(s)
Coronavirus 3C Proteases , Molecular Docking Simulation , Neural Networks, Computer , SARS-CoV-2 , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Humans , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , COVID-19 Drug Treatment , Deep Learning , Protein Binding , COVID-19/virology
20.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462102

ABSTRACT

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Subject(s)
Aminoquinolines , Aniline Compounds , COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Molecular Docking Simulation , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...